- ISBNコード
- 9784046022110
- 商品形態
- 一般書
- サイズ
- 四六判
- 商品寸法(横/縦/束幅)
- 128 × 188 × 15.0 mm
- 総ページ数
- 256ページ
最先端のデータ分析の手法を基礎から応用までざっと学べる1冊!
【本書の内容】
次代の花形職種である「データサイエンティスト」はどのような知識を身につけているのか?
データサイエンスとは?という基礎から、実際にデータ分析するために必要なパソコンの知識、プログラミングの基礎、機械学習、画像解析まで。
気鋭の若手研究者による、データサイエンス入門の一冊。
【本書の目次】
第1部 データサイエンスの基本●(1)データサイエンスとは?
第2部 データサイエンスの基礎技術●(2)計算機の仕組み/(3)プログラミングの基礎(1)/(4)プログラミングの基礎(2)/(5)アルゴリズム(1)/(6)アルゴリズム(2)/(7)データベース/(8)最適化の方法
第3部 統計学・機械学習の基礎●(9)機械学習の基本/(10)過学習とモデル選択/(11)回帰問題と住宅価格/(12)アンサンブル学習と住宅価格/(13)分類問題/(14)教師なし学習
第4部 コーパスとネットワークの分析●(15)トピックモデル/(16)ネットワーク分析
第5部 ディープラーニング●(17)ニューラルネットワークの基礎/(18)ディープラーニング/(19)ディープラーニングによる系列データ分析/(20)ディープラーニングによる画像分析
次代の花形職種である「データサイエンティスト」はどのような知識を身につけているのか?
データサイエンスとは?という基礎から、実際にデータ分析するために必要なパソコンの知識、プログラミングの基礎、機械学習、画像解析まで。
気鋭の若手研究者による、データサイエンス入門の一冊。
【本書の目次】
第1部 データサイエンスの基本●(1)データサイエンスとは?
第2部 データサイエンスの基礎技術●(2)計算機の仕組み/(3)プログラミングの基礎(1)/(4)プログラミングの基礎(2)/(5)アルゴリズム(1)/(6)アルゴリズム(2)/(7)データベース/(8)最適化の方法
第3部 統計学・機械学習の基礎●(9)機械学習の基本/(10)過学習とモデル選択/(11)回帰問題と住宅価格/(12)アンサンブル学習と住宅価格/(13)分類問題/(14)教師なし学習
第4部 コーパスとネットワークの分析●(15)トピックモデル/(16)ネットワーク分析
第5部 ディープラーニング●(17)ニューラルネットワークの基礎/(18)ディープラーニング/(19)ディープラーニングによる系列データ分析/(20)ディープラーニングによる画像分析
目次
第1部 データサイエンスの基本●(1)データサイエンスとは?
第2部 データサイエンスの基礎技術●(2)計算機の仕組み/(3)プログラミングの基礎(1)/(4)プログラミングの基礎(2)/(5)アルゴリズム(1)/(6)アルゴリズム(2)/(7)データベース/(8)最適化の方法
第3部 統計学・機械学習の基礎●(9)機械学習の基本/(10)過学習とモデル選択/(11)回帰問題と住宅価格/(12)アンサンブル学習と住宅価格/(13)分類問題/(14)教師なし学習
第4部 コーパスとネットワークの分析●(15)トピックモデル/(16)ネットワーク分析
第5部 ディープラーニング●(17)ニューラルネットワークの基礎/(18)ディープラーニング/(19)ディープラーニングによる系列データ分析/(20)ディープラーニングによる画像分析
第2部 データサイエンスの基礎技術●(2)計算機の仕組み/(3)プログラミングの基礎(1)/(4)プログラミングの基礎(2)/(5)アルゴリズム(1)/(6)アルゴリズム(2)/(7)データベース/(8)最適化の方法
第3部 統計学・機械学習の基礎●(9)機械学習の基本/(10)過学習とモデル選択/(11)回帰問題と住宅価格/(12)アンサンブル学習と住宅価格/(13)分類問題/(14)教師なし学習
第4部 コーパスとネットワークの分析●(15)トピックモデル/(16)ネットワーク分析
第5部 ディープラーニング●(17)ニューラルネットワークの基礎/(18)ディープラーニング/(19)ディープラーニングによる系列データ分析/(20)ディープラーニングによる画像分析